Ditemukan 30140 dokumen yang sesuai dengan query :: Simpan CSV
Irene Febriani; Pembimbing: Iwan Ariawan; Penguji: Besral, Tri Yunis Miko Wahyono, Drajot Darsono, Eva Sulistiowati
Abstrak:
Tujuan: Penelitian ini bertujuan untuk menemukan faktor risiko dominandan membuat skor risiko diabetes tidak terdiagnosis (UDDM) dan prediabetes.Metode: Pembuatan skor risiko berdasarkan data yang tersedia hasil RisetKesehatan Dasar 2013, dengan kriteria ≥ 18 tahun, baru terdiagnosis saat Riskesdas,tidak menderita penyakit kronis/menular lainnya. Nilai koefisien β hasil analisisregresi logistik multinomial model prediksi digunakan untuk mengenmbangkan skor.Keakuratan skor prediksi diabetes dan prediabetes dinilai dengan ROC (ReceiverOperating Characteristic). Hasil: Dua model prediksi dikembangkan menjadi skorrisiko. Model 1 prediksi diabetes tidak terdiagnosis dengan 7 prediktor AUC 73,5%,sen 62,2%, spes 70,8%, PPV 12,8%, NPV 96,5%, titik potong ≥22, model 2 prediksidiabetes tidak terdiagnosis dengan 5 prediktor AUC 72,4%, sen 68,3%, spes 64,7%,PPV 11,8%, NPV 96,7%, titik potong ≥20. Prediksi prediabetes tidak dikembangkanmenjadi skor karena tidak akurat, tetapi dapat diketahui faktor dominannya.Kesimpulan: Indonesia dapat memiliki perhitungan skor risiko guna memprediksidiabetes yang tidak terdiagnosis berdasarkan data Riset Kesehatan Dasar yangtersedia. Skor Risiko tersebut dapat digunakan tenaga kesehatan untukmengidentifikasi individu dengan risiko tinggi dan masyarakat awam mampumenggunakan skor tersebut.Kata kunci : Prediabetes, Diabetes tidak terdiagnosis (UDDM), faktor risiko, skor
Objective: This studi aims to find the risk factors and develop risk scorefor undiagnosed diabetes and prediabetes. Method: Risk score madebased on available data from Basic Health Research 2013 in Indonesia,with criteria 18-55 years old, newly diagnosed diabetes, and not affectedby chronic /infectious diseases before.β coeff value from multinomiallogistic regression analysis results of predictive models are used todevelop risk score. The accuracy of risk score assessed with ROC(Receiver Operating Characteristic). Result: 2 prediction models are useto develop risk score. The accuracy form 7 predictors for undiagnoseddiabetes in model 1 are AUC 73.5%, sen 62.2%, spes 70.8%, PPV 12.8%,NPV 96.5%, cut off ≥22. The accuracy form 5 predictors for undiagnoseddiabetes in model 2 are AUC 72.4%, sen 68.3%, spes 64.7%, PPV 11.8%,NPV 96.7%, cut off ≥20 . Score predikction for diabetes not developed,because of poor accuray, but the result of analysis can showed prediabetesdominant risk factors. Conclusion: Indonesia may have a risk scorecalculation for predicting undiagnosed diabetes based on data from HealthResearch provided. The risk score can be used by health workers toindentified individuals with high-risk and the general public are able touse these scores.Keyword : prediabetes, undiagnosed diabetes, risk factor, score
Read More
Objective: This studi aims to find the risk factors and develop risk scorefor undiagnosed diabetes and prediabetes. Method: Risk score madebased on available data from Basic Health Research 2013 in Indonesia,with criteria 18-55 years old, newly diagnosed diabetes, and not affectedby chronic /infectious diseases before.β coeff value from multinomiallogistic regression analysis results of predictive models are used todevelop risk score. The accuracy of risk score assessed with ROC(Receiver Operating Characteristic). Result: 2 prediction models are useto develop risk score. The accuracy form 7 predictors for undiagnoseddiabetes in model 1 are AUC 73.5%, sen 62.2%, spes 70.8%, PPV 12.8%,NPV 96.5%, cut off ≥22. The accuracy form 5 predictors for undiagnoseddiabetes in model 2 are AUC 72.4%, sen 68.3%, spes 64.7%, PPV 11.8%,NPV 96.7%, cut off ≥20 . Score predikction for diabetes not developed,because of poor accuray, but the result of analysis can showed prediabetesdominant risk factors. Conclusion: Indonesia may have a risk scorecalculation for predicting undiagnosed diabetes based on data from HealthResearch provided. The risk score can be used by health workers toindentified individuals with high-risk and the general public are able touse these scores.Keyword : prediabetes, undiagnosed diabetes, risk factor, score
T-4682
Depok : FKM-UI, 2016
S2 - Tesis Pusat Informasi Kesehatan Masyarakat
☉
Titin Delia; pembimbing: Tris Eryando; Penguji: Besral, Dwi Hapsari
S-8500
Depok : FKM UI, 2014
S1 - Skripsi Pusat Informasi Kesehatan Masyarakat
☉
Dedy Irawan; Pembimbing: Pandu Riono; Penguji: Ratna Djuwita, Laurentia, Muhammad NoorFarid
Abstrak:
Diabetes melitus tipe 2 telah menjadi masalah kesehatan masyarakat yang serius dan merupakan penyebab penting dari angka kesakitan, kematian, kecacatan dan kerugian ekonomi di seluruh dunia. Penelitian ini bertujuan untuk mengestimasi prevalensi, faktor-faktor risiko dan model prediksi kejadian diabetes melitus tipe 2 di daerah urban Indonesia. Penelitian ini menggunakan data Survei Riset Kesehatan Dasar 2007. Kriteria diagnostik menggunakan metode Tes Toleransi Glukosa Oral (TTGO) menurut World Health Organization (WHO) 1999 dan American Diabetes Association (ADA) 2003. Dari 19.960 responden berusia 15 tahun keatas hanya 18.746 responden yang dianalisis. Analisis data menggunakan regresi logistik dengan desain sampel dua tahap. Dari analisis data didapatkan prevalensi diabetes melitus sebesar 5,98% (95%CI 5,40% - 6,62%), prevalensi diabetes melitus tertinggi pada kelompok umur diatas 45 tahun sebesar 12,41% (95%CI 11,13% - 13,81%). Dengan mengontrol tingkat pendidikan, pekrjaan dan umur didapatkan odds ratio kegemukan sebesar 1,52 (OR = 1,52; 95%CI 1,27 - 1,82), odds ratio obesitas sebesar 2,40 (OR = 2,40; 95%CI 1,80 - 3,19) dan odds ratio obesitas sentral sebesar 1,92 (OR = 1,92; 95%CI 1,62 - 2,26). Dengan menghindari kejadian obesitas sentral dapat mencegah 22,6% (95% CI 18,2% - 26,5%) kejadian diabetes melitus tipe 2 di populasi, atau sekitar 474.922 kasus diabetes melitus dapat dicegah jika obesitas sentral diintervensi.
Diabetes mellitus type 2 is a serious public health problem in the world. Diabetes mellitus is also the main cause of morbidity, mortality, disability, and economic loss all over the world include development countries. The research objective is to estimate the diabetes mellitus prevalence, risk factors, and prediction model in urban areas of Indonesia. By analyzed The Indonesia Basic Health Research Survey 2007 that consist of 19,960 respondents aged above 15 years old who had Oral Glucose Tolerance Test (OGTT). Only 18,746 respondents had been analyzed. Logistic regression with two stage design sampling was used to analyze the data. The result showed that diabetes mellitus prevalence was 5.98% (95%CI 5.40% - 6.62%), and the highest prevalence was 12.41% (95%CI 11.13% - 13.81%) in an above 45 year-old age group. We estimate odds ratio by adjusted education level, occupation and age. The odds ratio of overweight is 1.52 (OR = 1.52; 95%CI 1.27 - 1.82), the odds ratio of general obesity is 2.40 (OR = 2.40; 95%CI 1.80 - 3.19) and the odds ratio of central obesity is 1.92 (OR = 1.92; 95%CI 1.62 - 2.26). By prevent central obesity we could prevent 22.6% (95% CI 18.2% - 26.5%) the expected diabetes mellitus cases in the population, or above 474,922 diabetes mellitus cases could prevent.
Read More
Diabetes mellitus type 2 is a serious public health problem in the world. Diabetes mellitus is also the main cause of morbidity, mortality, disability, and economic loss all over the world include development countries. The research objective is to estimate the diabetes mellitus prevalence, risk factors, and prediction model in urban areas of Indonesia. By analyzed The Indonesia Basic Health Research Survey 2007 that consist of 19,960 respondents aged above 15 years old who had Oral Glucose Tolerance Test (OGTT). Only 18,746 respondents had been analyzed. Logistic regression with two stage design sampling was used to analyze the data.
T-3220
Depok : FKM-UI, 2010
S2 - Tesis Pusat Informasi Kesehatan Masyarakat
☉
Tiara Roroputri Aprilia; Pembimbing: Sutiawan; Penguji: Sutanto Priyo Hastono, Dian Kurnia Rabbani
Abstrak:
Hipertensi menjadi salah satu masalah kesehatan masyarakat di Indonesia dengan prevalensi tertinggi pada kelompok lanjut usia. Tujuan penelitian ini adalah untuk mengetahui prevalensi dan faktor-faktor yang berhubungan dengan hipertensi yang belum terdiagnosis pada lansia di Indonesia. Desain penelitian ini adalah cross-sectional dengan menggunakan data sekunder dari hasil survei Riskesdas 2018. Sampel pada penelitian ini adalah seluruh penduduk berusia ≥60 tahun di Indonesia yang belum terdiagnosis hipertensi, yaitu sebanyak 70.127 orang. Data dianalisis secara regresi logistik sederhana (bivariat) dan regresi logistik berganda (multivariat). Hasil penelitian menunjukkan bahwa prevalensi hipertensi yang belum terdiagnosis pada lansia di Indonesia sebesar 52,4%. Umur, jenis kelamin, tingkat pendidikan, wilayah tempat tinggal, konsumsi makanan asin, perilaku merokok, dan aktivitas fisik merupakan faktorfaktor yang berhubungan dengan hipertensi yang belum terdiagnosis pada lansia di Indonesia, dengan umur sebagai faktor yang paling berhubungan dengan AOR = 1,44 (95% CI: 1,36-1,52). Untuk mengurangi prevalensi hipertensi yang belum terdiagnosis pada lansia, pemerintah diharapkan dapat fokus pada penguatan promosi, skrining, dan surveilans kesehatan pada lansia
Hypertension is one of the public health problems in Indonesia with the highest prevalence in elderly. The purpose of this study was to determine the prevalence and factors associated with undiagnosed hypertension among elderly in Indonesia. The design of this study is cross-sectional using secondary data from the results of the 2018 basic health research survey. The sample in this study was the entire population aged ≥60 years in Indonesia who had not been diagnosed with hypertension, which was 70,127 people. Data were analyzed by simple logistic regression (bivariate) and multiple logistic regression (multivariate). The results showed that the prevalence of undiagnosed hypertension among elderly in Indonesia was 52.4%. Age, gender, education level, area of residence, consumption of salty food, smoking behavior, and physical activity are the factors associated with undiagnosed hypertension among elderly in Indonesia, with age as the most associated factor (AOR = 1.44, 95% CI: 1.36-1.52). To reduce the prevalence of undiagnosed hypertension among elderly, the government is expected to focus on strengthening promotion, screening, and health surveillance on elderly
Read More
Hypertension is one of the public health problems in Indonesia with the highest prevalence in elderly. The purpose of this study was to determine the prevalence and factors associated with undiagnosed hypertension among elderly in Indonesia. The design of this study is cross-sectional using secondary data from the results of the 2018 basic health research survey. The sample in this study was the entire population aged ≥60 years in Indonesia who had not been diagnosed with hypertension, which was 70,127 people. Data were analyzed by simple logistic regression (bivariate) and multiple logistic regression (multivariate). The results showed that the prevalence of undiagnosed hypertension among elderly in Indonesia was 52.4%. Age, gender, education level, area of residence, consumption of salty food, smoking behavior, and physical activity are the factors associated with undiagnosed hypertension among elderly in Indonesia, with age as the most associated factor (AOR = 1.44, 95% CI: 1.36-1.52). To reduce the prevalence of undiagnosed hypertension among elderly, the government is expected to focus on strengthening promotion, screening, and health surveillance on elderly
S-10946
Depok : FKMUI, 2022
S1 - Skripsi Pusat Informasi Kesehatan Masyarakat
☉
Dyana Santika Sari; Pembimbing: Besral; Penguji: Iwan Ariawan, Artha Prabawa, Nita Mardiah, Eva Sulistiowati
Abstrak:
Penderita obesitas di dunia terus meningkat tidak hanya di negara maju namun negara berkembang seperti Indonesia. Peningkatan kejadian obesitas ternyata juga sejalan dengan peningkatan kejadian Sindrom Metabolik (SM) salah satunya adalah Diabetes Mellitus Tipe 2. Pengukuran obesitas yang selama ini dilakukan belum akurat. ABSI menggabungkan hasil ukur lingkar pinggang dengan IMT dan tinggi badan sebagai upaya mencari indikator antropometri baru yang lebih valid dalam menggambarkan bahaya dari kegemukan dan obesitas. Sedangkan untuk memperkiraan kejadian Diabetes agar menjadi lebih akurat diperlukan durasi obesitas. Aktivitas fisik diduga menjadi faktor utama yang mempengaruhi kejadian obesitas. Penelitian ini menggunakan pendekatan kuantitatif dengan menggunakan desain studi kohor retrospektif. Analisis penelitian menggunakan survival dengan regresi cox. Sampel dalam penelitian ini berjumlah 2.591 orang dewasa dengan obesitas di 5 Kelurahan di Kota Bogor. Hasil penelitian ini menunjukkan ketahanan terhadap DM Tipe 2 paling rendah terjadi pada orang obesitas yang melakukan aktivitas fisik rendah dibandingkan dengan yang beraktifitas sedang dan tinggi. Faktor lain yang mempengaruhi survival time antara lain umur, jenis kelamin, riwayat keluarga, asupan karbohidrat, dan asupan lemak.
Read More
T-5712
Depok : FKM UI, 2019
S2 - Tesis Pusat Informasi Kesehatan Masyarakat
☉
Amrina Rosyada; Pembimbing: Indang Trihandini; Penguji: Ratna Djuwita, Robert Meison Saragih
S-7739
Depok : FKM UI, 2013
S1 - Skripsi Pusat Informasi Kesehatan Masyarakat
☉
Marisa Rayhani; Pembimbing: Tris Eryando; Penguji: Martya Rahmaniati Makful, Renti Mahkota, Sulistyo, Refni Dumesty
Abstrak:
Kematian akibat tuberkulosis (TB) secara global sebanyak lebih dari 95% terjadi pada negara berpenghasilan rendah dan menengah. Indonesia ikut menyumbang 60% dari keseluruhan kasus TB global (WHO, 2015). Provinsi DKI Jakarta dan Provinsi Banten termasuk ke dalam lima provinsi dengan estimasi prevalensi TB tertinggi di Indonesia (Riskesdas, 2007 dan 2013). Perlu dibuat model yang mempertimbangkan kondisi lokal spesifik dengan memperhatikan perbedaan lokasi dari aspek geografis, kependudukan, dan kondisi sosial (Eryando, 2007 dan Rahmaniati, 2015). Penelitian ini adalah penelitian kuantitatif analitik dengan desain potong lintang. Kajian faktor risiko kejadian TB sesuai konsep Model Perilaku Kesehatan oleh Green (1980) dan Kerangka Kerja Faktor Risiko TB oleh WHO (2010) dengan metode Geographically Weighted Regression (GWR) pada 13 kabupaten/kota di Provinsi DKI Jakarta dan Provinsi Banten. Hasil penelitian memperlihatkan tiga kelompok faktor risiko dapat menjelaskan kontribusi parameter dalam pemodelan kejadian TB di kedua provinsi sebesar 6%. Model GWR mampu menggambarkan variasi tiga kelompok faktor risiko kejadian TB di kedua provinsi sebesar 96%. Estimasi rata-rata proporsi kejadian TB akan meningkat pada risiko pendidikan rendah, bekerja, dan tersedianya fasilitas kesehatan TB. Status pendidikan menjadi parameter yang bernilai signifikan pada setiap kabupaten/kota. Setiap kabupaten/kota menghasilkan nilai estimasi berbeda yang menunjukkan besaran koefisien kejadian TB yang dipengaruhi oleh setiap perubahan parameternya. Setiap kabupaten/kota di kedua provinsi melalui Dinas Kesehatan perlu menerapkan kebijakan dan intervensi dengan pertimbangan nilai estimasi parameter pada faktor risiko sesuai pemodelan GWR, terutama peningkatan pendidikan dan promosi kesehatan TB. Kata kunci: Geographically Weighted Regression (GWR), Tuberkulosis (TB), Faktor Risiko Deaths from tuberculosis (TB) globally by more than 95% occur in low- and middle-income countries. Indonesia contributes 60% of all global TB cases (WHO, 2015). DKI Jakarta Provinces and Banten Provinces are included in the five provinces with the highest estimated prevalence of TB in Indonesia (Riskesdas, 2007 and 2013). Its need some model to consider the specific local conditions, which is geographical, demographic, and social aspects for appropriate health system improvement by region (Eryando, 2007 and Rahmaniati, 2015). This research is an analytic quantitative research with cross sectional design. Assessment of risk factors for TB incidence according to the Health Behavior Model by Green (1980) and TB Risk Factors Framework by WHO (2010) using Geographically Weighted Regression (GWR) method in 13 districts/cities in DKI Jakarta Province and Banten Province. The results showed three groups of risk factors could explain the contribution of parameters in modeling TB incidence in both provinces by 6%. The GWR model was able to describe the variation of three groups of TB risk factors in both provinces by 96%. The average estimate of the proportion of TB incidence will increase in the risk of low education, work, and the availability of TB health facilities. Educational status becomes a significant parameter in every district/city. Each district/city produces a different estimation value indicating the magnitude of TB incidence coefficients that is affected by each parameter change. Each district/city in both provinces through the Department of Health needs to implement policies and interventions with consideration of parameter estimation values on risk factors according to GWR modeling, especially improving TB education and promotion. Keywords: Geographically Weighted Regression (GWR), Tuberculosis (TB), Risk Factor
Read More
T-4952
Depok : FKM-UI, 2017
S2 - Tesis Pusat Informasi Kesehatan Masyarakat
☉
Leny Sang Surya; Pembimbing: R. Sutiawan; Penguji: Besral, Ella Nurlaela Hadi, Heni Rudiyanti, Saraswati
Abstrak:
Secara universal prevalensi penyakit periodontal di Dunia sebesar 5-20% (2005).Prevalensi penyakit periodontal di Indonesia mengalami peningkatan sebesar42,8% (1995), 70% (2001), 96,58% (2004), hampir seluruh wilayah di Indonesiamemiliki prevalensi penyakit periodontal lebih dari 15% (2015). Penelitian inibertujuan untuk mengetahui hubungan faktor lokal, faktor sistemik dan faktorperilaku terhadap kejadian penyakit periodontal di Indonesia tahun 2013. Desainpenelitian yang digunakan adalah cross sectional dengan menggunakan datasekunder Riset Kesehatan Dasar (Riskesdas) tahun 2013. Uji statistik yangdigunakan adalah regresi logistik ganda. Prevalensi penyakit periodontal diIndonesia sebesar 9,77%. Faktor lokal yang berhubungan dengan penyakitperiodontal yaitu calculus, missing dan crowded. Faktor sistemik yangberhubungan dengan penyakit periodontal yaitu diabetes melitus, stres dan IMT.Faktor perilaku yang berhubungan dengan penyakit periodontal yaitu perilakumenyikat gigi dan perilaku merokok. Disarankan untuk selalu menjaga kebersihangigi dan mulut dengan melakukan sikat gigi minimal dua kali sehari, segeramengganti gigi yang hilang dengan menggunakan gigi palsu, memperbaikisusunan gigi yang berjejal di dalam lengkung rahang, menghindari rokok,menjaga pola makan dan aktivitas fisik untuk menghindari terjadinya obesitas danpenyakit diabetes melitus, serta periksa gigi minimal setiap enam bulan sekali.Kata Kunci : penyakit periodontal, faktor lokal, faktor sistemik, faktor perilaku
Prevalence of periodontal disease in the world by universal is 5-20% (2005). Theprevalence of periodontal disease in Indonesia increased by 42,8% (1995), 70%(2001), 96,58% (2004), almost all regions in Indonesia have periodontal diseaseprevalence is more than 15% (2015). This study aims to determine the associationof local factors, systemic factors and behavior factors of periodontal diseaseincidence in Indonesia 2013. The study design used is cross sectional usingsecondary data Basic Health Research (Riskesdas) in 2013. The statistical testused multiple logistic regression. The prevalence of periodontal disease inIndonesia is 9,77%. Local factors associated with periodontal disease are calculus,missing and crowded. Systemic factors associated with periodontal disease arediabetes mellitus, stress and IMT. Behavior factors associated with periodontaldisease is tooth brushing behavior and smoking behavior. It is advisable to alwaysmaintain oral hygiene by brush your teeth at least twice a day, immediatelyreplace the missing teeth by using partial dentures, correct arrangement of teethcrowding in the arch, avoid smoking, maintain a diet and physical activity toprevent obesity and diabetes mellitus, as well as dental checup at least every sixmonths.Keywords: periodontal disease, local factors, systemic factors, behavior factors
Read More
Prevalence of periodontal disease in the world by universal is 5-20% (2005). Theprevalence of periodontal disease in Indonesia increased by 42,8% (1995), 70%(2001), 96,58% (2004), almost all regions in Indonesia have periodontal diseaseprevalence is more than 15% (2015). This study aims to determine the associationof local factors, systemic factors and behavior factors of periodontal diseaseincidence in Indonesia 2013. The study design used is cross sectional usingsecondary data Basic Health Research (Riskesdas) in 2013. The statistical testused multiple logistic regression. The prevalence of periodontal disease inIndonesia is 9,77%. Local factors associated with periodontal disease are calculus,missing and crowded. Systemic factors associated with periodontal disease arediabetes mellitus, stress and IMT. Behavior factors associated with periodontaldisease is tooth brushing behavior and smoking behavior. It is advisable to alwaysmaintain oral hygiene by brush your teeth at least twice a day, immediatelyreplace the missing teeth by using partial dentures, correct arrangement of teethcrowding in the arch, avoid smoking, maintain a diet and physical activity toprevent obesity and diabetes mellitus, as well as dental checup at least every sixmonths.Keywords: periodontal disease, local factors, systemic factors, behavior factors
T-4758
Depok : FKM-UI, 2016
S2 - Tesis Pusat Informasi Kesehatan Masyarakat
☉
Nafa Shahira Anglila Syaharani; Pembimbing: R. Sutiawan; Penguji: Sutanto Priyo Hastono, Sudibyo Alimoeso
Abstrak:
Read More
Komplikasi kehamilan adalah salah satu penyebab kematian ibu yang dapat berdampak tidak hanya pada kesehatan ibu tetapi juga pada bayi baru lahir. Usia yang terlalu muda (35 tahun) merupakan usia ibu hamil yang berisiko tinggi terhadap komplikasi kehamilan. Banten dan Jawa Barat berkontribusi terhadap tingginya angka wanita yang hamil pada usia risiko tinggi sekaligus juga menduduki peringkat lima tertinggi provinsi dengan persentase komplikasi kehamilan se-Indonesia. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang berhubungan dengan komplikasi kehamilan berdasarkan usia ibu hamil risiko tinggi di Provinsi Banten dan Jawa Barat. Desain penelitian ini adalah cross-sectional menggunakan data sekunder dari hasil Survei Demografi Kesehatan Indonesia (SDKI) 2017. Sampel penelitian ini adalah 777 wanita yang melahirkan anak terakhir lahir hidup dalam kurun waktu lima tahun terakhir yang berusia muda dan tua saat hamil dan bertempat tinggal di Provinsi Banten dan Jawa Barat. Data dianalisis menggunakan uji chi-square dan uji regresi logistik ganda model prediksi yang distratifikasi berdasarkan usia ibu hamil risiko tinggi. Hasil penelitian menunjukkan bahwa komplikasi kehamilan lebih banyak terjadi pada ibu hamil usia tua di kedua provinsi. Di Provinsi Banten, variabel yang berhubungan dengan komplikasi kehamilan pada ibu hamil usia muda adalah status kehamilan, umur kandungan saat pemeriksaan kehamilan pertama, jumlah pemeriksaan kehamilan, masalah akses perawatan kesehatan ibu, pengambilan keputusan perawatan kesehatan ibu, tingkat pendidikan ibu, dan indeks kekayaan dengan umur kandungan saat pemeriksaan kehamilan pertama dan masalah akses perawatan kesehatan ibu sebagai variabel yang paling berhubungan. Pada ibu hamil usia tua, variabel yang berhubungan secara signifikan adalah status kehamilan dan jumlah pemeriksaan kehamilan dengan jumlah pemeriksaan kehamilan sebagai variabel yang paling berhubungan. Di Provinsi Jawa Barat, variabel yang berhubungan secara signifikan pada ibu hamil usia muda adalah tingkat pendidikan ibu dengan status pekerjaan ibu sebagai variabel yang paling berhubungan. Untuk mencegah komplikasi kehamilan pada ibu hamil usia risiko tinggi, institusi kesehatan terkait perlu meningkatkan promosi edukasi terkait komplikasi kehamilan dan “4 Terlalu dan 3 Terlambat”; akses layanan kesehatan reproduksi; cakupan pelayanan kesehatan ibu hamil; serta deteksi komplikasi kehamilan berdasarkan faktor risiko yang berpengaruh signifikan.
Pregnancy complications are one of the causes of maternal death which can affect not only on mother’s health but also on the newborn. Ages that are too young (35 years) are the ages of pregnant women who are at high risk of pregnancy complications. Banten and West Java Province contribute to the high number of women who pregnant at a high-risk maternal age and are also ranked as the fifth highest province with the percentage of pregnancy complications in Indonesia. This study aims to determine the factors associated with pregnancy complications according to high-risk maternal age in the Provinces of Banten and West Java. The research design was cross-sectional using secondary data from 2017 Indonesia Demographic Health Survey (IDHS). The sample of this study was 777 women who gave birth to their last live birth within the last five years who were at young and advanced ages during pregnancy and lived in Banten and West Java Province. Data was analyzed using the chi-square test and multiple logistic regression stratified by high-risk maternal age. The results showed that pregnancy complications were more common in older pregnant women in both provinces. In Banten Province, the variables associated with pregnancy complications in young age pregnant women are pregnancy status, months pregnant at first received antenatal care, number of received antenatal care, problems accessing maternal health care, maternal health care decision-making, maternal education level, and wealth index with months pregnant at first received antenatal care and problems accessing maternal health care as the most related variables. In advanced age pregnant women, the variables that were significantly related were pregnancy status and number of received antenatal care with number of received antenatal care being the most related variable. In West Java Province, the variable that is significantly related to in young age pregnant women is maternal education level with maternal employment status as the most related variable. To prevent pregnancy complications in pregnant women of high risk age, health institutions need to increase promotion of education related to pregnancy complications and “4 Terlalu dan 3 Terlambat”; access to reproductive health services; coverage of health services for pregnant women; and detection of pregnancy complications based on risk factors that have a significant effect.
S-11415
Depok : FKM-UI, 2023
S1 - Skripsi Pusat Informasi Kesehatan Masyarakat
☉
Putri Farastya Rahmawati; Pembimbing: Sutanto Priyo Hastono; Penguji: Besral, Dyah Erti Mustikawati
S-8905
Depok : FKM UI, 2015
S1 - Skripsi Pusat Informasi Kesehatan Masyarakat
☉
