Ditemukan 30190 dokumen yang sesuai dengan query :: Simpan CSV
The tuberculosis treatment success rate in Indonesia in 2023 did not reach the 90% target. Treatment success impacts the reduction of infection spread and drug resistance cases, making early prediction of treatment success crucial. This study aims to develop a machine-learning model to predict treatment success. Data from Indonesia's Tuberculosis Information System (SITB) cohort was used. The study included productive-age patients (15-64 years) diagnosed with drug-sensitive tuberculosis who received treatment from January 1, 2020, to December 31, 2023. Data was randomly split into training (80%) and testing (20%) sets for model validation, with cross-validation performed. The algorithms used include decision tree, random forest, multilayer perception, extreme gradient boosting, and logistic regression. A consensus was reached for decision-making variables required in performing machine learning-based modeling of SITB data to predict treatment success using modeling of SITB data to predict treatment success using the Delphi method. The results of the study show that the random forest machine learning algorithm had the best performance and highest accuracy in predicting treatment success. This machine learning–based prediction tool can provide early predictions with SHAP (SHapley Additive ExPlanations) interpretation, helping healthcare workers make informed decisions more easily.
