Ditemukan 13 dokumen yang sesuai dengan query :: Simpan CSV
PT. XY Dump Truck service company, a cement subsidiary in the limestone mining sector, at PT. XY has had a accident, so an accident analysis using the HFACS-MI method needs to be done. This research to analyze the factors that contribute laten and active failures to accidents in dump truck operations based on the HFACS-MI framework. This research uses a case study research design with a semi-quantitative method with a descriptive approach. The population in this study is accident report data in the form of investigation results from the operation of DT as many as 27 cases of work accidents in 2019-2021. The results showed that the category of HFACS-MI that contributed the most was organizational influences as many as 429 related to the lack of work safety analysis. Then followed by 370 Unsafe leadership related to inadequate work supervision. There are 289 preconditions for unsafe acts related to slippery road surface conditions. As many as 247 unsafe acts are related to failure to recognize hazards. And the smallest contributing category is the outside factor as much as 1 related to workshops outside the company. It is concluded that the HFACS-MI framework on latent failures that contributes a lot is organizational influences and on active failures that contributes a lot is unsafe act, then the suggestions for corrective actions in each HFACS-MI category are on repairing latent and active failures with an emphasis on the category of organizational influences.
Human Factors Analysis and Classification System in Mining Industry (HFACS-MI) is an accident investigation method to find the factors that cause accidents in the mining industry. The HFACS method itself has been widely used for accident investigations in various industries such as aviation, construction, railroads, and other industries. This method consists of 5 (five) levels, namely unsafe act, precondition for unsafe act, unsafe leadership, organizational influences, and outside factors. PT. XYZ is a mining company in the East Kalimantan region. Accidents that have occurred certainly make the company suffer losses, it is necessary to study the analytical process in detail to find out the active and latent causal factors and find out the interrelationships of the causes of accidents from various levels using the HFACS-MI method.
Keselamatan kerja pada jalur hauling di industri pertambangan batubara merupakan aspek penting yang memerlukan perhatian serius, mengingat tingginya risiko kecelakaan kerja pada aktivitas pengangkutan material. Penelitian ini bertujuan untuk menganalisis faktor-faktor yang memengaruhi kecelakaan kerja dan menyusun model pencegahan berbasis Human Factor Analysis and Classification System for Mining Industry (HFACS-MI) serta metode investigasi Australian Transport Safety Bureau (ATSB). Pendekatan campuran digunakan dalam penelitian ini, dengan data kuantitatif diperoleh melalui survei terhadap 420 operator dump truck di tiga perusahaan tambang terbuka di Kalimantan, serta data kualitatif dari wawancara mendalam, Focus Group Discussion (FGD), dan observasi langsung di lapangan. Analisis regresi linier berganda digunakan untuk menguji pengaruh enam variabel independen faktor eksternal, pengaruh organisasi, kepemimpinan tidak berkeselamatan, pengendalian risiko, kondisi lingkungan, dan tindakan individu terhadap kecelakaan. Hasil penelitian menunjukkan bahwa seluruh variabel memiliki pengaruh signifikan, dengan kepemimpinan tidak berkeselamatan dan kondisi lingkungan sebagai faktor dominan penyebab kecelakaan. Temuan ini mengindikasikan perlunya penguatan pengawasan, perbaikan perilaku kerja operator, serta peningkatan kualitas jalur hauling. Model pencegahan yang diusulkan menitikberatkan pada penguatan kepemimpinan, pengendalian risiko, dan perawatan infrastruktur hauling secara berkelanjutan untuk menurunkan angka kecelakaan kerja di sektor pertambangan.
Occupational safety in hauling roads within the coal mining industry is a critical aspect that requires serious attention, considering the high risk of work accidents during material transportation activities. This study aims to analyze the factors influencing occupational accidents and to develop a preventive model based on the Human Factor Analysis and Classification System for Mining Industry (HFACS-MI) and the Australian Transport Safety Bureau (ATSB) investigation method. A mixed-method approach was used, with quantitative data collected through a survey of 420 dump truck operators across three open-pit mining companies in Kalimantan, and qualitative data gathered from in-depth interviews, focus group discussions (FGDs), and direct field observations. Multiple linear regression analysis was employed to assess the influence of six independent variables external factors, organizational influence, unsafe leadership, risk control, environmental conditions, and individual actions on work accidents. The results indicated that all variables had a significant effect, with unsafe leadership and environmental conditions emerging as the dominant contributing factors. These findings highlight the need to strengthen supervision, improve operator behavior, and enhance the quality of hauling road infrastructure. The proposed accident prevention model emphasizes the reinforcement of leadership roles, risk control management, and continuous improvement of hauling infrastructure to reduce the incidence of occupational accidents in the mining sector.
Industri pertambangan merupakan kegiatan industri yang mempunyai risiko tinggi. Faktor manusia telah diidentifikasi sebagai penyebab paling umum terjadinya kecelakaan besar di industri pertambangan. Oleh karena itu, penelitian ini bertujuan menganalisis data kecelakaan di PT. X dengan menggunakan kerangka analisis faktor manusia dan sistem klasifikasi industri pertambangan (HFACS-MI). Metode penelitian ini melibatkan pengumpulan data kualitatif untuk 322 kasus kecelakaan di PT. X yang terjadi pada tahun 2018-2022 dari basis data Sistem Manajemen Insiden yang dikategorikan sebagai cedera yang dapat dicatat. Faktor penyebab kecelakaan ini diberi kode menggunakan kerangka HFACS-MI. Data kecelakaan dianalisis menggunakan statistik deskriptif. Temuan penelitian menunjukkan bahwa 84% dari seluruh kecelakaan melibatkan pekerja kontraktor dan 16% melibatkan pekerja tetap PT. X. Hasil analisis menggunakan kerangka HFACS-MI menunjukkan bahwa setiap lapisan atau tingkatan memberikan kontribusi terhadap kecelakaan, yaitu faktor luar (44%), pengaruh organisasi (68%), kepemimpinan tidak aman (90%), prasyarat tindakan tidak aman (99%), dan tindakan tidak aman (99,7%). Temuan ini menekankan perlunya fokus pada pengurangan jumlah kesalahan manusia selama operasi penambangan untuk mengurangi tren kecelakaan saat ini. Kerangka kerja HFACS-MI telah terbukti menjadi alat penting untuk analisis kecelakaan yang kuat terhadap faktor manusia di pertambangan.
The mining industry is an industrial activity with high risks. Human factors have been identified as the most common cause of major accidents in the mining industry. Therefore, this research aims to analyze accident data at PT. X using the human factors analysis and classification system-mining industry framework (HFACS-MI). This research collected qualitative data for 322 accident cases at PT. X occurring from 2018 to 2022 from the Incident Management System database categorized as recordable injuries. Factors causing the accidents were coded using HFACS-MI framework. Accident data were analyzed using descriptive statistics. The study findings revealed that 84% of all accidents involved contractor workers and 16% involved the PT. X permanent workers. The results of analysis using the HFACS-MI framework show that each layer or level contributes to accidents, namely outside factors (44%), organizational influences (68%), unsafe leadership (90%), preconditions of unsafe acts (99%), and unsafe acts (99.7%). These findings emphasize the need to focus on reducing the number of human errors during mining operations to reduce the current accident trend. The HFACS-MI framework has proven to be a valuable tool for robust accident analysis of human factors in mining.
Kata Kunci :Kecelakaan lalu lintas tambang, tabrakan, sistem pertahanan, Swiss CheeseModel, HFACS-MI
In mining process activities, there are potential hazards that poses a risk to be anaccident. Collision is one of accident types that frequently happen on miningtraffic operations jobsite PT SS (41%) and it has tendency to occur repeatedly.This study aimed to gain an overview of defences system in preventing accidentsaccording to Swiss Cheese Model framework. The research was conducted with aqualitative approach through mining traffic accident data analysis in one ofjobsite in PT SS, an open coal mining contractor company, using the HumanFactors Analysis and Classification System in Mining Industry (HFACS-MI).Based on the analysis of 53 cases of mining traffic accidents, revealed that themost common problems were skill-based errors, adverse mental states,coordination and communication, inadequate leadership, and organizationprocess. It can be concluded that the existing defences system to prevent miningtraffic accidents has not been optimal yet. Therefore, defences systemimprovement, either targeted to the individual or organizational, is needed tocontrol accident risk.
Key words:Mine traffic accident, collision, defences system, Swiss Cheese Model, HFACSMI
